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1 Neutrino Oscillations

The weak eigenstates that we normally observe (νµ, νe) can oscillate between each other if
they are composed of an add-mixture of mass eigenstates (ν1 , ν2). If the weak eigenstates
are rotated by an angle θ with respect to the mass eigenstates (Fig. 1), then a matrix
equation can be written that relates the weak eigenstates to the mass eigenstates (see
below). For example, using the matrix equation below, the νe state can be written as
|νe〉 = cos θ |ν1〉+ sin θ |ν2〉, where θ is called the mixing angle.

(
νe
νµ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)

νµ
ν2

νe

ν1

θ

Figure 1: The weak eigenstates are rotated by an angle θ with respect to the mass eigenstates

(ν1 and ν2) to allow mixing (i.e., oscillations) between the νµ and νe.

The mass eigenstates (ν1 , ν2) have masses m1 and m2 and both have momentum p.
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2 Look at the time evolution of the νµ state

|νµ(t = 0)〉 = |νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉 (1)

|νµ(t)〉 = − sin θ |ν1〉 e−i
E1 t

h̄ + cos θ |ν2〉 e−i
E2 t

h̄ (2)

where E1 =
√
p2c2 +m2

1c
4 and E2 =

√
p2c2 +m2

2c
4 and p1 = p2.

3 Some Approximations

Let h̄ = c = 1.

Then E1 =
√
p2 +m2

1 and E2 =
√
p2 +m2

2

Also, the neutrinos are assumed to be relativistic:

γ =
E

moc2
=

√
p2c2 +m2

oc
4

moc2
À 1 (3)

then pÀ mo (4)

E =
√
p2 +m2

o = p
√

1 +m2
o/p

2 ' p+
1

2

m2
o

p
(5)

where we use the binomial expansion: (1 + x)n ' 1 +nx+ n(n−1)
2!

x2 + · · · and keep just the
first two terms.

The energy of the two mass eigenstates can be written approximately as:

E1 ' p+
1

2

m2
1

p
and likewise E2 ' p+

1

2

m2
2

p
. (6)
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4 How does the νµ propagate in time?

|νµ(t)〉 = − sin θ |ν1〉 e
−i
(
p+ 1

2

m2
1
p

)
t

+ cos θ |ν2〉 e
−i
(
p+ 1

2

m2
2
p

)
t

(7)

|νµ(t)〉 = e
−i
(
p+ 1

2

m2
1
p

)
t


− sin θ |ν1〉 + cos θ |ν2〉 e

+i

(
1
2

m2
1
−m2

2
p

)
t


 (8)

Now, for some definitions and substitutions:

∆m2 = m2
1
−m2

2
and t =

x

c
= x and e−iz = e

−i
(
p+ 1

2

m2
1
p

)
t

(9)

Now, we have:

|νµ(t)〉 = e−iz
(
− sin θ |ν1〉 + cos θ |ν2〉 e

+i

(
1
2

∆m2

p

)
x
)

(10)

5 What is the probability for νµ → νe ?

To calculate the probability for a “pure” νµ state to oscillate into a νe state, we must square
the quantum mechanical amplitude that describes this transition.

P (νµ → νe) = |〈νe|νµ(t)〉|2 (11)

Recall from section (1) that

〈νe| = cos θ 〈ν1 | + sin θ 〈ν2 | (12)

So, now we can write the amplitude as:

〈νe|νµ(t)〉 = e−iz
(
− sin θ cos θ + sin θ cos θ e

i
2

∆m2

p
x
)

(13)

where we use the relationship 〈νi|νj〉 = δij.

Taking the absolute value squared, we find that:
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P (νµ → νe) = |〈νe|νµ(t)〉|2 =

= e+ize−iz sin2 θ cos2 θ
(
−1 + e

i
2

∆m2

p
x
)(
−1 + e−

i
2

∆m2

p
x
)

Since the neutrino is relativistic, we can also make the substitution: p = Eν , and likewise,
we will make the substitution x = L.

P (νµ → νe) =
1

2
sin2 2θ

(
1− cos

(
∆m2

2

L

Eν

))
. (14)

Using the trigonometric relation (1 − cos 2θ)/2 = sin2 θ, we can write the above equation
as

P (νµ → νe) = sin2 2θ sin2

(
∆m2

4

L

Eν

)
. (15)

Now, we can write the argument of the second sin2 term above so it’s dimensionless by
introducing the appropriate number of h̄’s and c’s.

(
∆m2

4

L

Eν

)
⇒

(
∆m2c4

4 h̄c

L

Eν

)

Let’s write the above quantity in units that are convenient for an experimental physicist.
We would like the variables in the above equation to have the following units: ∆m2c4(eV2),
L (meters), and Eν (MeV). If we substitute h̄c with 197 eV·nm, we can write the quantity
in parenthesis as

(
∆m2c4

4 h̄c

L

Eν

)
⇒

(
∆m2c4

4× 197 eV · nm

L

Eν

)(
10−6MeV/eV

10−9m/nm

)
=
(

1.27 ∆m2 L

Eν

)

Finally, we can write Eq. 15 in its more familiar form:

Pνµ→νe(L,E) = sin2 2θ sin2
(

1.27 ∆m2 L

Eν

)
. (16)

If neutrino oscillations occur, the mixing probability (sin2 2θ) and the mass difference (∆m2)
are determined by nature. Physicists can probe different regions of ∆m2 by adjusting the
distance between the neutrino source and the detector (L) as well as the neutrino energy
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Figure 2: Neutrino oscillations (νe appearance) as a function of length for a monoenergetic beam

of νµ’s. There is a maximum probability to observe νe interactions at 50, 150, and 250 meters.

Eν . If a mono-energetic beam of neutrinos is produced (e.g., 40 MeV) and the mixing
parameters suggested by LSND are correct (e.g., sin2 2θ = 0.0026 and ∆m2 ' 1 eV), then
it’s possible to plot the oscillation of νµ → νe using Eq. 16. A small fraction of the initial
νµ beam (sin2 2θ) appears as νe’s as shown in Fig. 2.

Maximal mixing occurs if sin2 2θ is ' 1 (i.e., θ = 45o). In the case of atmospheric neutrinos,
it is suspected that maximal mixing occurs. If this were the case, the peaks in Fig. 2 would
oscillate between 0 and 1.0 on the vertical axis–assuming all the atmospheric neutrinos
were monoenergetic (which is not the case in real life).

The L/E term is the quantity of interest when exploring different mass regions. In the
LSND experiment, L was about 30 meters and E was about 30 MeV giving an L/E of ∼ 1.
If MiniBooE is going to explore the same ∆m2 and sin2 θ region, then its L/E must be
similar to the LSND value. In the case of MiniBooNE, the neutrinos travel about 500 m
and have energies on the order of 500 MeV. So, roughly speaking, the MiniBooNE exper-
iment is designed to explore the same ∆m2 region as LSND, but with higher sensitivity
(i.e., down to lower values of sin2 2θ).

6 Real Neutrino Beams

In the previous section, we discussed where the νe appearance occurs as a function of dis-
tance when we have a monoenergetic neutrino beam. In reality, most neutrino sources have
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a range of energies which will tend to “wash out” the distribution shown in Fig. 2.

To investigate the changes to the amplitude and oscillation length, we explore two pos-
sibilities for neutrino energy distributions–a narrow band distribution, and a wide band
distribution. In the first case, we assume that the neutrino momentum is well-defined, that
is, ∆p/p < 5%. The neutrino energy distribution is shown on the left-hand side of Fig. 3
while the resulting oscillation probability is shown as a function of length on the right
hand side. The oscillation as a function of length Pνµ→νe(L) is calculated by convoluting
the energy distribution f(E) on the left side of Fig. 3 with the oscillation probability
Pνµ→νe(L,E).

Pνµ→νe(L) =
∫ ∞

0
Pνµ→νe(L,E) f(E) dE =

∫ ∞

0
sin2 2θ sin2

(
1.27

∆m2 L

E

)
f(E) dE
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Figure 3: Neutrino oscillations (νe appearance) as a function of length for a monoenergetic beam

of νµ’s. There is a maximum probability to observe νe interactions at 50, 150, and 250 meters.

The convolution integral was done using Mathematica 4.0

Next we investigate the oscillation probability when using a wide band neutrino source,
fwb(E). A wide band neutrino beam (ν̄µ) is shown in Fig. 4 resulting from muon decays.
The energy distribution is described by the following function:

dN

dE
= E2

(
1− 2E

3Emax

)

where Emax is 52.8 MeV for muon decay. This function is shown on the left-hand side
of Fig. 4. Once again, convoluting this this energy distribution with Pνµ→νe(L,E), we
obtain the oscillating function seen on the right-hand side of Fig. 4. Notice that both the
amplitude and the peaks of the oscillation (Pνµ→νe(L)) are shifted.

What about Mini-BooNE? As a homework assignment, one can use the energy distri-
bution of νµ’s produced by π+ decays-in-flight and convolute this distribution to obtain the
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Figure 4: Neutrino oscillations (νe appearance) as a function of length for a wide band beam of

νµ’s. Note the pronounced oscillations from Fig. 3 are diminished due to the broadband energy

distribution of neutrinos produced by decay-at-rest muons. Furthermore, the maxima are pushed

to 40, 160, and 290 meters.

oscillation function Pνµ→νe(L). This would give a first order calculation of the oscillation
probability one might observe from the Mini-BooNE experiment, assuming the ∆m2 and
sin2 2θ solutions from the LSND experiment are correct. A more precise calculation of the
oscillation probability would require a full Monte-Carlo simulation of the production of neu-
trinos along with the geometrical and detector efficiencies of the Mini-BooNE experiment.
This full-scale Monte Carlo simulation is underway.
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