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1 Neutrino Oscillations

The weak eigenstates that we normally observe (v,,v.) can oscillate between each other if
they are composed of an add-mixture of mass eigenstates (v,,v,). If the weak eigenstates
are rotated by an angle 6 with respect to the mass eigenstates (Fig. 1), then a matrix
equation can be written that relates the weak eigenstates to the mass eigenstates (see
below). For example, using the matrix equation below, the v, state can be written as
|Ve) = cos @ |vy) + sin b |vy), where 0 is called the mizing angle.
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Figure 1: The weak eigenstates are rotated by an angle § with respect to the mass eigenstates
(v1 and 1) to allow mixing (i.e., oscillations) between the v, and ve.

The mass eigenstates (v, v,) have masses m, and m, and both have momentum p.



2 Look at the time evolution of the v, state

|Vu<t:())> = |Vu> = —Sin9|y1> + COS@|y2> (1)
u(t)) = —sinf|v,) 672‘% + cosf|v,) e*i? @)

where E), = /p2c2 + mic* and FEy = \/p?c2 + m3ct and p; = po.
p 1 2

3 Some Approximations

Let h =c=1.

Then FE;=/p?+m? and E, = ,/p?+ m}

Also, the neutrinos are assumed to be relativistic:

E \/ P22+ m2ct
= > 1 (3)

’}/ =
MeC? mMeC?

then p>m, (4)
1 m?
E = \Jp*+m] = pyl+m}/p* ~ Pty (5)

where we use the binomial expansion: (1 + z)" ~ 1+ nz + "%-222 + ... and keep just the

20
first two terms.

The energy of the two mass eigenstates can be written approximately as:

1 2 1m2
E ~p+ 277;1 and likewise E22p—|—§?2 ) (6)



4 How does the v, propagate in time?

Now, for some definitions and substitutions:
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Now, we have:
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. (t)) = e (—sin& lv,) +cosb |v,) eH(

0 )x> (10)

5 What is the probability for v, — v, 7

To calculate the probability for a “pure” v, state to oscillate into a v, state, we must square
the quantum mechanical amplitude that describes this transition.

Py —ve) = [(velvu(®))I’ (11)
Recall from section (1) that

(Ve] = cos@ (v,| + sinf (v, (12)

So, now we can write the amplitude as:

. i Am?2
(Velvu(t)) =™ (— sin 6 cos 0 + sin @ cosf 27 x) (13)

where we use the relationship (v;|v;) = d;;.
Taking the absolute value squared, we find that:
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2
P(Vu_”/e) = |<Ve”/u(t)>| =

tir —iz .2 2 iam? _iam?,

= "¢ ¥ sin” 0 cos 9(—1+e2 P )(—1+€ 27 p )

Since the neutrino is relativistic, we can also make the substitution: p = E,, and likewise,
we will make the substitution = = L.

1 Am? L
Py, —v.) = §Sin226’ <1—COS< 7271 E)) . (14)

Using the trigonometric relation (1 — cos?26)/2 = sin®#, we can write the above equation
as

(15)

Am? L
P (v, — v.) = sin®20 sin2< m —)

E,

Now, we can write the argument of the second sin® term above so it’s dimensionless by
introducing the appropriate number of i’s and ¢’s.

Am? L N Am2ct L

4 F, 4 he E,
Let’s write the above quantity in units that are convenient for an experimental physicist.
We would like the variables in the above equation to have the following units: Am2c4(eV2),

L (meters), and E, (MeV). If we substitute fic with 197 eV-nm, we can write the quantity
in parenthesis as

Am?*ct L N Am?2ct L\ (107°MeV/eVY <1 07 A L)
4 he B, 4x 197eV -nm E, 10~m/nm U m E,

Finally, we can write Eq. 15 in its more familiar form:

L
P, _..(L,E) = sin®20 sin’ <1.27 Am2E> : (16)

If neutrino oscillations occur, the mixing probability (sin? 20) and the mass difference (Am?)
are determined by nature. Physicists can probe different regions of Am? by adjusting the
distance between the neutrino source and the detector (L) as well as the neutrino energy
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Figure 2: Neutrino oscillations (v, appearance) as a function of length for a monoenergetic beam
of v,’s. There is a maximum probability to observe v, interactions at 50, 150, and 250 meters.

E,. If a mono-energetic beam of neutrinos is produced (e.g., 40 MeV) and the mixing
parameters suggested by LSND are correct (e.g., sin®20 = 0.0026 and Am? ~ 1 eV), then
it’s possible to plot the oscillation of v, — v, using Eq. 16. A small fraction of the initial
v, beam (sin? 20) appears as v,’s as shown in Fig. 2.

Maximal mixing occurs if sin? 20 is ~ 1 (i.e., # = 45°). In the case of atmospheric neutrinos,
it is suspected that maximal mixing occurs. If this were the case, the peaks in Fig. 2 would
oscillate between 0 and 1.0 on the vertical axis—assuming all the atmospheric neutrinos
were monoenergetic (which is not the case in real life).

The L/E term is the quantity of interest when exploring different mass regions. In the
LSND experiment, L was about 30 meters and F was about 30 MeV giving an L/FE of ~ 1.
If MiniBooE is going to explore the same Am? and sin®# region, then its L/E must be
similar to the LSND value. In the case of MiniBooNE, the neutrinos travel about 500 m
and have energies on the order of 500 MeV. So, roughly speaking, the MiniBooNE exper-
iment is designed to explore the same Am? region as LSND, but with higher sensitivity
(i.e., down to lower values of sin® 26).

6 Real Neutrino Beams

In the previous section, we discussed where the v, appearance occurs as a function of dis-
tance when we have a monoenergetic neutrino beam. In reality, most neutrino sources have



a range of energies which will tend to

‘wash out” the distribution shown in Fig. 2.

To investigate the changes to the amplitude and oscillation length, we explore two pos-
sibilities for neutrino energy distributions—a narrow band distribution, and a wide band
distribution. In the first case, we assume that the neutrino momentum is well-defined, that
is, Ap/p < 5%. The neutrino energy distribution is shown on the left-hand side of Fig. 3
while the resulting oscillation probability is shown as a function of length on the right
hand side. The oscillation as a function of length P, ., (L) is calculated by convoluting
the energy distribution f(E) on the left side of Fig. 3 with the oscillation probability
sz*We(Lv E)

Am? L
E

Py (L) = /O "By (L, E) f(E)dE = /O ~ sin? 26 sin? (1.27 ) f(E)dE
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Figure 3: Neutrino oscillations (v, appearance) as a function of length for a monoenergetic beam
of v,’s. There is a maximum probability to observe v, interactions at 50, 150, and 250 meters.
The convolution integral was done using Mathematica 4.0

Next we investigate the oscillation probability when using a wide band neutrino source,
fup(E). A wide band neutrino beam (7,) is shown in Fig. 4 resulting from muon decays.
The energy distribution is described by the following function:

dN 9 2F
ae " (1 B 3Emax)

where F,,.. is 52.8 MeV for muon decay. This function is shown on the left-hand side
of Fig. 4. Once again, convoluting this this energy distribution with P, _, (L, E), we
obtain the oscillating function seen on the right-hand side of Fig. 4. Notice that both the
amplitude and the peaks of the oscillation (P,,_,,(L)) are shifted.

What about Mini-BooNE? As a homework assignment, one can use the energy distri-
bution of v,’s produced by 7+ decays-in-flight and convolute this distribution to obtain the
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Figure 4: Neutrino oscillations (v, appearance) as a function of length for a wide band beam of
v,’s. Note the pronounced oscillations from Fig. 3 are diminished due to the broadband energy
distribution of neutrinos produced by decay-at-rest muons. Furthermore, the maxima are pushed

to 40, 160, and 290 meters.

oscillation function P,, ., (L). This would give a first order calculation of the oscillation
probability one might observe from the Mini-BooNE experiment, assuming the Am? and
sin? 20 solutions from the LSND experiment are correct. A more precise calculation of the
oscillation probability would require a full Monte-Carlo simulation of the production of neu-
trinos along with the geometrical and detector efficiencies of the Mini-BooNE experiment.
This full-scale Monte Carlo simulation is underway.



