Homework Assignment #4

Due Date: February 7, 2019 (Thursday)

Mass $\rightarrow MeV/c^2$ not kilograms!!

Momentum $\rightarrow MeV/c$ not kilograms·meters/sec!!

Energy $\rightarrow MeV$ not joules !!

unless otherwise specified.

When you are asked for velocities, always quote your answers in units of "c," the speed of light.

velocity = βc

- **2.29** For what range of velocities of a particle of mass m can we use the classical expressions for KE
- **2.32** Use the binomial expansion to show that Eq. 2.34 for the relativistic kinetic energy
- **Problem 3:** Using the relativistic relationship between momentum and kinetic energy to make a plot of $\frac{p}{m_0c}$ vs. $\frac{K}{m_0c^2}$. Let the independent variable $\left(\frac{K}{m_0c^2}\right)$ span the domain from $0 \to 2$.
 - a. Draw the plot
 - b. What values of γ does the domain $(0 \rightarrow 2)$ cover?
- **2.33** According to observer O, a certain particle has momentum of 817 MeV/c and a total relativistic energy of 1125 MeV.
- **2.34** An electron is moving at a speed of 0.81*c*. By how much must its kinetic energy increase to raise its speed to 0.91*c* ?
- **Problem 6:** At what velocity does the classical kinetic energy begin to deviate from the relativistic kinetic energy by 2%?

Problem 7: Calculate the outgoing momentum of the two-body decays shown below.

Note: You can look up the masses of these particles at the following URL:

http://pdg.lbl.gov/2014/download/rpp-2014-booklet.pdf

For example: the mass of the muon is 105.658 MeV/c^2 (page 14)

assume the mass of the neutrino (v_{μ}) is zero.

Mass of the π^{\pm} is found on page 25.

Mass of the ρ^o is found on page 27. 775.26 MeV/c²

These masses can also be obtained from Mathematica

a.
$$\rho^o \to \pi^- \pi^+$$

b.
$$\pi^+ \to \mu^+ \nu_\mu$$

From Homework #3

Problem 7*: (Extra Credit—2 points) A particle of mass M at rest decays into two unequal masses m_1 and m_2 . Show that the square of the momentum of each of the final particles is given by:

$$p^{2} = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}c^{2}$$